ポジション取引戦略

フィボナッチ数列

フィボナッチ数列
再帰ツリー

再帰と再帰式を理解する

F(n)= F(n – 1)+ F(n – 2)
fibonacci(0)= 0
fibonacci(1)= 1
フィボナッチ(2)=フィボナッチ(1)+フィボナッチ(0)= 1 + 0 = 1
フィボナッチ(3)=フィボナッチ(2)+フィボナッチ(1)= 1 + 1 = 2
フィボナッチ(4)=フィボナッチ(3)+フィボナッチ(2)= 2 + 1 = 3
フィボナッチ(5)=フィボナッチ(4)+フィボナッチ(3)= 3 + 2 = 5
フィボナッチ(6)=フィボナッチ(5)+フィボナッチ(4)= 5 + 3 = 8

新しいフィボナッチ数(数n)を取得するたびに、次のフィボナッチnとして(n + 1)フィボナッチを見つけると、その数nは実際には(n – 1)数になります。 上記の反復ステップを見ると、n = 2の場合、
フィボナッチ(2)=フィボナッチ(2-1)+フィボナッチ(2-2)=フィボナッチ(1)+フィボナッチ(0)= 1 + 0 = 1

フィボナッチ(3)=フィボナッチ(3-1)+フィボナッチ(3-2)=フィボナッチ(2)+フィボナッチ(1)= 1 + 1 = 2
つまり、nが増加するたびに、現在の(n – 1)番目と(n – 2)番目のフィボナッチの値も増加します。 フィボナッチ数列 フィボナッチ数列 しかし、nごとに(n – 1)と(n – 2)フィボナッチを追跡するのは面倒です。 自分自身を呼び出して反復タスクを自分で繰り返すメソッドを作成してはどうでしょうか。

自分自身を呼び出すメソッドは、再帰メソッドと呼ばれます。 再帰メソッドには、プログラムがそれ自体の呼び出しを停止する基本ケースが必要です。 フィボナッチ数列の基本ケースは、fibonacci(0)= 0およびfibonacci(1)= 1です。それ以外の場合、Fibonacciメソッドはそれ自体を1回呼び出します:fibonacci(n – 2)およびfibonacci(n – two)。 次に、それらを追加してfibonacci(n)を取得します。 n番目のフィボナッチを見つけるための再帰的な方法は次のように書くことができます-

よく見ると、再帰はスタックプロパティに従います。 小さなサブ問題を解決して、問題の解決策を取得します。 n> 1の場合、最後の行を実行します。 したがって、n = 6の場合、関数はfibonacci(6 – 1)とfibonacci(6 – 2)を呼び出して追加します。 fibonacci(6 – 1)またはfibonacci(5)は、fibonacci(5 – 1)およびfibonacci(5 – 2)を呼び出して追加します。 この再帰は、6がベースケース値(fibonacci(0)= 0またはfibonacci(1)= 1)に達するまで続きます。ベースケースに達すると、6つの基本値が追加され、フィボナッチ(XNUMX)。 以下は、再帰のツリー表現です。

再帰ツリー

再帰ツリー

ご覧のとおり、再帰はどれほど強力である可能性があります。 上記のツリーを作成しているのは4行のコードのみです(基本ケースを含む上記のコードの最後の行)。 Recursionはスタックを維持し、ベースケースにドリルダウンします。 動的計画法(DP):再帰は理解とコーディングが簡単ですが、時間とメモリの点でコストがかかる可能性があります。 以下の繰り返しツリーを見てください。 fib(4)で始まる左側のサブツリーとfib(3)で始まる右側のサブツリーはまったく同じです。 それらは500000である同じ結果を生成しますが、同じタスクをXNUMX回実行しています。 nが大きい場合(例:XNUMX)、同じサブタスクを複数回呼び出すため、再帰によってプログラムが非常に遅くなる可能性があります。

ツリーで囲まれた再帰

ツリーで囲まれた再帰

この問題を回避するには、動的計画法を使用できます。 動的計画法では、以前に解決したサブタスクを使用して、同じタイプの将来のタスクを解決できます。 これは、元の問題を解決するためのタスクを減らす方法です。 以前に解決したサブタスクのソリューションを格納する配列fib[]を作成しましょう。 lie [0]=0およびlie[1]=1であることはすでにわかっています。これら2つの値を保存しましょう。 さて、fib [0]の値は何ですか? フィボナッチ数列 lie [0]=1およびlie[1]= 2はすでに保存されているので、lie [1] = lie [0] +lie[3]とだけ言います。 同様に、fib [4] lie [5] lie [XNUMX]……、lie[n]を生成できます。 以前に解決されたサブタスクは、元のタスクが解決されなくなるまで次のサブタスクに対して呼び出され、冗長な計算が削減されます。

再帰と再帰式を理解する

F(n)= F(n – 1)+ フィボナッチ数列 F(n – 2)
fibonacci(0)= 0
fibonacci(1)= 1
フィボナッチ(2)=フィボナッチ(1)+フィボナッチ(0)= 1 + 0 = 1
フィボナッチ(3)=フィボナッチ(2)+フィボナッチ(1)= 1 + 1 = 2
フィボナッチ(4)=フィボナッチ(3)+フィボナッチ(2)= 2 + 1 = 3
フィボナッチ(5)=フィボナッチ(4)+フィボナッチ(3)= 3 + 2 = 5
フィボナッチ(6)=フィボナッチ(5)+フィボナッチ(4)= 5 + 3 = 8

新しいフィボナッチ数(数n)を取得するたびに、次のフィボナッチnとして(n + 1)フィボナッチを見つけると、その数nは実際には(n – 1)数になります。 上記の反復ステップを見ると、n フィボナッチ数列 = 2の場合、
フィボナッチ(2)=フィボナッチ(2-1)+フィボナッチ(2-2)=フィボナッチ(1)+フィボナッチ(0)= 1 + フィボナッチ数列 0 = 1

フィボナッチ(3)=フィボナッチ(3-1)+フィボナッチ(3-2)=フィボナッチ(2)+フィボナッチ(1)= 1 + 1 = 2
つまり、nが増加するたびに、現在の(n – 1)番目と(n – 2)番目のフィボナッチの値も増加します。 しかし、nごとに(n – 1)と(n – 2)フィボナッチを追跡するのは面倒です。 フィボナッチ数列 自分自身を呼び出して反復タスクを自分で繰り返すメソッドを作成してはどうでしょうか。

自分自身を呼び出すメソッドは、再帰メソッドと呼ばれます。 再帰メソッドには、プログラムがそれ自体の呼び出しを停止する基本ケースが必要です。 フィボナッチ数列の基本ケースは、fibonacci(0)= 0およびfibonacci(1)= 1です。それ以外の場合、Fibonacciメソッドはそれ自体を1回呼び出します:fibonacci(n – 2)およびfibonacci(n – two)。 次に、それらを追加してfibonacci(n)を取得します。 フィボナッチ数列 n番目のフィボナッチを見つけるための再帰的な方法は次のように書くことができます-

よく見ると、再帰はスタックプロパティに従います。 小さなサブ問題を解決して、問題の解決策を取得します。 n> 1の場合、最後の行を実行します。 したがって、n = 6の場合、関数はfibonacci(6 – 1)とfibonacci(6 – 2)を呼び出して追加します。 fibonacci(6 – 1)またはfibonacci(5)は、fibonacci(5 – 1)およびfibonacci(5 – 2)を呼び出して追加します。 この再帰は、6がベースケース値(fibonacci(0)= 0またはfibonacci(1)= 1)に達するまで続きます。ベースケースに達すると、6つの基本値が追加され、フィボナッチ(XNUMX)。 以下は、再帰のツリー表現です。

再帰ツリー

再帰ツリー

ご覧のとおり、再帰はどれほど強力である可能性があります。 上記のツリーを作成しているのは4行のコードのみです(基本ケースを含む上記のコードの最後の行)。 Recursionはスタックを維持し、ベースケースにドリルダウンします。 動的計画法(DP):再帰は理解とコーディングが簡単ですが、時間とメモリの点でコストがかかる可能性があります。 以下の繰り返しツリーを見てください。 fib(4)で始まる左側のサブツリーとfib(3)で始まる右側のサブツリーはまったく同じです。 それらは500000である同じ結果を生成しますが、同じタスクをXNUMX回実行しています。 nが大きい場合(例:XNUMX)、同じサブタスクを複数回呼び出すため、再帰によってプログラムが非常に遅くなる可能性があります。

ツリーで囲まれた再帰

ツリーで囲まれた再帰

この問題を回避するには、動的計画法を使用できます。 動的計画法では、以前に解決したサブタスクを使用して、同じタイプの将来のタスクを解決できます。 これは、元の問題を解決するためのタスクを減らす方法です。 以前に解決したサブタスクのソリューションを格納する配列fib[]を作成しましょう。 lie [0]=0およびlie[1]=1であることはすでにわかっています。これら2つの値を保存しましょう。 さて、fib [0]の値は何ですか? lie [0]=1およびlie[1]= 2はすでに保存されているので、lie [1] = lie [0] +lie[3]とだけ言います。 同様に、fib [4] フィボナッチ数列 lie [5] lie [XNUMX]……、lie[n]を生成できます。 以前に解決されたサブタスクは、元のタスクが解決されなくなるまで次のサブタスクに対して呼び出され、冗長な計算が削減されます。

VOL.110 【場合の数攻略】 -フィボナッチ数列

まず、「フィボナッチ数列」とはどんな数列かを確認しておきます。
定義そのものは小学生が理解するのは無理だと思いますが、
結果としては
「最初の2項が0、1((1、1)あるいは(1、2)も中学受験ではあり)であり、以後どの項もその直前の2項の和となっているような数列」
です。
具体的には
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,・・・
となります。

実際は「第何項がいくつか」ということが大切なので、上記のような数列を「表」にまとめます。
直前の2項を足せばその項がいくつかを求められるので、少し練習すればほとんどの人が書けるようになります。
そうなると「第何項がいくつか」ということを悩む必要はほぼなくなりますね。

そして、ここまで来て初めて「場合の数」の分野に入ってきたとも言えます。
単に「第何項がいくつか」という問題ならば、「規則性」の分野と考えられるからです。
「場合の数」の問題で「フィボナッチ数列」を使って解くものは、典型的なものが2つあります。

ひとつは「階段(1段づつか1つ飛ばし)」、 フィボナッチ数列 フィボナッチ数列
もうひとつは「長方形(1×2)の敷き詰め」です。
6年生はどちらも「基本問題」として学習済みだと思いますが、ピンとこない受験生はすぐに確認することをお勧めします。

ここまで見てきて
「フィボナッチ数列で解く場合の数(前の結果の和を利用して解くものまで範囲を広げます)」
の問題で難しいものは

  • 「階段」「長方形の敷き詰め」ではないがフィボナッチ数列(それと見抜くのが難しい)
  • フィボナッチ数列
  • 単に直前の二項を足した数列ではないもの
  • 最初、1辺が1cmの正方形を2つ並べて長方形をつくり、以降は長方形の長いほうの辺にその辺と一辺の長さが等しい正方形をくっつけ新たな長方形を作るという操作を繰り返したときの、辺の長さ。
    ※これは「フィボナッチ数列」の性質のひとつである「1番目からN番目までの項をそれぞれ二乗(その数同士を2回掛け合わせること)したものの和は、N番目の項と(N+1)番目の項の積に等しい」の証明になっています。
  • 1つがいのウサギは、産まれて2か月後から毎月1つがいのウサギを産む。ウサギが死なないとしたときの、○○カ月後のつがいの数。
    ※これがフィボナッチさんが考案したとされる問題です。
  • ある整数を「偶数なら2で割り、奇数なら1を加える」という操作をその数が1になるまで繰り返す。□回の操作で1になる整数の数。

  • 「トリボナッチ数列」
    階段の問題で「1段ずつ」「1段飛ばし」「2段飛ばし」の3種類が可能なら「トリボナッチ数列」になります。バスケットボールの点数の入り方も同様です。
    ※前2つを足すのが「フィボナッチ数列」なら、前3つを足すのが「トリボナッチ数列」です。 フィボナッチ数列
    4つは「テトラナッチ数列」だそうです。
  • 「長方形(1×2)と正方形(2×2)の敷き詰め」
    例えば2×6の長方形に敷き詰める場合は端で分類し、以下のような表に整理します。

    上の表を自分の力で書けるようになればこの手の問題は大抵解けるようになると思います。
    大切なのは「前の結果を利用する」ということと「表に整理する」ということの2点です。

再帰と再帰式を理解する

F(n)= F(n – 1)+ F(n – 2)
fibonacci(0)= 0
fibonacci(1)= 1
フィボナッチ(2)=フィボナッチ(1)+フィボナッチ(0)= 1 + 0 = 1
フィボナッチ(3)=フィボナッチ(2)+フィボナッチ(1)= 1 + 1 = 2
フィボナッチ(4)=フィボナッチ(3)+フィボナッチ(2)= 2 + 1 = 3
フィボナッチ(5)=フィボナッチ(4)+フィボナッチ(3)= 3 + 2 = 5
フィボナッチ(6)=フィボナッチ(5)+フィボナッチ(4)= 5 + 3 = 8

新しいフィボナッチ数(数n)を取得するたびに、次のフィボナッチnとして(n + 1)フィボナッチを見つけると、その数nは実際には(n – 1)数になります。 上記の反復ステップを見ると、n = 2の場合、
フィボナッチ(2)=フィボナッチ(2-1)+フィボナッチ(2-2)=フィボナッチ(1)+フィボナッチ(0)= 1 + 0 フィボナッチ数列 = 1

フィボナッチ(3)=フィボナッチ(3-1)+フィボナッチ(3-2)=フィボナッチ(2)+フィボナッチ(1)= 1 + 1 = 2
つまり、nが増加するたびに、現在の(n – 1)番目と(n – 2)番目のフィボナッチの値も増加します。 しかし、nごとに(n – 1)と(n – 2)フィボナッチを追跡するのは面倒です。 自分自身を呼び出して反復タスクを自分で繰り返すメソッドを作成してはどうでしょうか。

自分自身を呼び出すメソッドは、再帰メソッドと呼ばれます。 再帰メソッドには、プログラムがそれ自体の呼び出しを停止する基本ケースが必要です。 フィボナッチ数列の基本ケースは、fibonacci(0)= 0およびfibonacci(1)= 1です。それ以外の場合、Fibonacciメソッドはそれ自体を1回呼び出します:fibonacci(n – フィボナッチ数列 2)およびfibonacci(n – two)。 次に、それらを追加してfibonacci(n)を取得します。 n番目のフィボナッチを見つけるための再帰的な方法は次のように書くことができます-

よく見ると、再帰はスタックプロパティに従います。 小さなサブ問題を解決して、問題の解決策を取得します。 n> 1の場合、最後の行を実行します。 したがって、n = 6の場合、関数はfibonacci(6 – 1)とfibonacci(6 – 2)を呼び出して追加します。 fibonacci(6 – 1)またはfibonacci(5)は、fibonacci(5 フィボナッチ数列 – 1)およびfibonacci(5 – 2)を呼び出して追加します。 この再帰は、6がベースケース値(fibonacci(0)= 0またはfibonacci(1)= 1)に達するまで続きます。ベースケースに達すると、6つの基本値が追加され、フィボナッチ(XNUMX)。 以下は、再帰のツリー表現です。

再帰ツリー

再帰ツリー

ご覧のとおり、再帰はどれほど強力である可能性があります。 上記のツリーを作成しているのは4行のコードのみです(基本ケースを含む上記のコードの最後の行)。 Recursionはスタックを維持し、ベースケースにドリルダウンします。 動的計画法(DP):再帰は理解とコーディングが簡単ですが、時間とメモリの点でコストがかかる可能性があります。 以下の繰り返しツリーを見てください。 fib(4)で始まる左側のサブツリーとfib(3)で始まる右側のサブツリーはまったく同じです。 それらは500000である同じ結果を生成しますが、同じタスクをXNUMX回実行しています。 nが大きい場合(例:XNUMX)、同じサブタスクを複数回呼び出すため、再帰によってプログラムが非常に遅くなる可能性があります。

ツリーで囲まれた再帰

ツリーで囲まれた再帰

この問題を回避するには、動的計画法を使用できます。 動的計画法では、以前に解決したサブタスクを使用して、同じタイプの将来のタスクを解決できます。 これは、元の問題を解決するためのタスクを減らす方法です。 以前に解決したサブタスクのソリューションを格納する配列fib[]を作成しましょう。 lie [0]=0およびlie[1]=1であることはすでにわかっています。これら2つの値を保存しましょう。 さて、fib [0]の値は何ですか? lie [0]=1およびlie[1]= 2はすでに保存されているので、lie [1] = lie [0] +lie[3]とだけ言います。 同様に、fib [4] lie [5] lie [XNUMX]……、lie[n]を生成できます。 以前に解決されたサブタスクは、元のタスクが解決されなくなるまで次のサブタスクに対して呼び出され、冗長な計算が削減されます。

Fibonacci Series フィボナッチ数列 In Python | #programming #python #shorts

フィボナッチ

#python programming
#pycharm
#python
#pythontutorial
Fibonacci series in python
@Connected Study

【2020/11/19.FX相場予想】ドル円(USDJPY)フィボナッチ効かず損切り撤退!AUDCAD三尊天井で売り狙い!【最新のFXトレードを毎日更新】

最新のFXトレードや相場分析・予想を毎日更新しています。 ■チャンネル登録はこちら ⇒ ■公式LINE@はこちら ⇒ ■ツイッターはこちら ⇒ [email protected]に登録していただいた方には、YouTube上では公開していない〈限定動画コンテン.

【注意】勝つための正しい使い方【フィボナッチリトレースメント】

0 バイナリーオプションは強い根拠を見つけることにより、勝率を上げることが可能になり、その強い根拠となる要因の1つとして『多くの根拠を重ねる』ということがとても重要になってきます。 ですが、そういった根拠の考え方を間違っている人が凄.

フィボナッチ予想 ボートレース実践編

TENSETは今からが買い時。フィボナッチ購入をしましょう。

0 クリプトアセットが初めての投資体験という方も多いと思います。 そのような方はまず分散投資の一つとして、 フィボナッチ数列 つみたてニーサ口座の年間満額投資をお勧めします。 楽天証券で。 バンガードの全世界株ETFを。 月に3万円。 積み立て登録しておけ.

【初心者】フィボナッチを使えば、FXや株で儲かる【プロが注目するポイントとは?】潜在意識と黄金比率とリトレースメント

0 フィボナッチは、株やFXや仮想通貨などで多くの投資家が使っている、かなり高勝率で勝てるチャート分析法 投資家心理なのか? それとも、潜在意識的なところで、人の心が黄金律に反応しているのか? リトレースメントを、ドル円のチャートに実際に.

関連記事

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次
閉じる